

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL

Dissertation

Submitted in the partial fulfillment of the requirement for

the award of Degree of

MMAASSTTEERR OOFF TTEECCHHNNOOLLOOGGYY

IINN

CCOOMMPPUUTTEERR SSCCIIEENNCCEE && TTEECCHHNNOOLLOOGGYY

BY

JITENDER SINGH

UNDER THE SUPERVISION OF

PROF. PARIMALA N.

SCHOOL OF COMPUTER &SCHOOL OF COMPUTER &SCHOOL OF COMPUTER &SCHOOL OF COMPUTER & SYSTEMS SCIENCES SYSTEMS SCIENCES SYSTEMS SCIENCES SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIJAWAHARLAL NEHRU UNIJAWAHARLAL NEHRU UNIJAWAHARLAL NEHRU UNIVERSITYVERSITYVERSITYVERSITY

NEW DELHINEW DELHINEW DELHINEW DELHI----110067110067110067110067

ddeeddiiccaatteedd ttoo……

mmyy yyoouunnggeerr bbrrootthheerr DDiinneesshh

i

CERTIFICATE

This is to certify that this thesis, entitled “Mapping UML Diagrams to XML”,

being submitted by Mr. Jitender Singh to School of Computer & Systems

Sciences, Jawaharlal Nehru University, New Delhi in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science & Technology, is a record of original work done by him under the

supervision of Prof. Parimala N., during the Monsoon Semester, 2003.

The results reported in this thesis have not been submitted in part or full to any

other University or Institution for the award of any degree.

JITENDER SINGH
(Student)

Prof. Parimala N.
(Supervisor)

Prof. Karmeshu
(Dean, SC&SS, JNU, New Delhi-110067)

ii

ACKNOWLEDGEMENTS

“Perhaps the most valuable result of all education is the ability to make yourself
do the thing you have to do, when it ought to be done, whether you like it or not; it
is the first lesson that ought to be learned; and however early a man's training
begins, it is probably the last lesson that he learns thoroughly.”

With the writing of this thesis, I would like to extend my thanks to all of the people
who have helped me to be able to write it.

My first thanks go to my supervisor Prof. Parimala N. who helped and guided me

throughout the duration of this work. Apart from her guidance in this duration, her
methods of the distribution of the knowledge of the subject in the previous
semester have also benefited me a lot. It has been a good test of her patience to
guide me out of my rough ideas and rubbish thoughts. I am very grateful to her
for providing me with important resources for the research and analysis.

I would also like to extend a special thanks to the Dean, Prof. Karmeshu, and
other faculty members of the SC & SS, JNU, especially Prof. PC Saxena, Prof.
GV Singh, Prof. KK Bhardwaj, Prof. S. Balasundaram, Dr. DK Lobial, Dr.
Sona Minz, and Dr. RC Phoha for their able guidance, which made me equipped

to carry on this work.

I would also like thank my classmates and friends for their kind help on the
discussion related to my work and providing useful suggestions and resources.
My special mention in this regard goes to Hemant Gaur, Vikas Dahiya, Manish
Bansal, Mohit Kumar, Sudesh Singh Chandel and Rakesh Roshan.

I would also like to make a mention of the non-teaching staff of the school who
has worked hard to provide us with a very smooth and comfortable environment
for the research work.

In the last, but not the least, I would like to thank all my family members for their
support over the years, which has resulted in my this contribution.

Jitender Singh
New Delhi, March 16, 2004

iii

ABSTRACT

Unified Modeling Language (UML) is a standard object oriented design modeling
language for business and technical systems and has been standardized by
Object Management Group (OMG) for system specifications and design.
Extensible Markup Language Schema (XML Schema) provide a means for
defining the structure, content and semantics of XML documents, which has been
approved as a W3C recommendation on May 2, 2001 by World Wide Web
Consortium (W3C). Since UML is a standard design modeling language and XML
is widely being accepted as information representation and sharing language
across Internet, efforts have been initiated to map UML diagrams to XML
documents. Currently most of these efforts are directed towards mapping only the
static aspects of the UML diagrams. In order to build a complete system, we have
to map the static as well as the dynamic aspects. In this thesis we have mapped
the following diagrams of UML: Class diagram, Sequence diagram, and
Collaboration diagram. We have defined the XML Schema Definition for the class
diagrams, sequence diagrams, and collaboration diagrams. We have also
proposed a mapping scheme for converting UML class diagrams, sequence
diagrams, and collaboration diagrams to XML documents. The rules for validating
the diagrams are devised and implemented. The class diagrams are validated
within its own structure, while the sequence and collaboration diagrams are
validated against the class diagrams used by them, apart from validating within
their own structure. Finally, we have implemented a system to automate all the
above functionality using Java.

iv

CONTENTS

 Certificate i
 Acknowledgement ii
 Abstract iii
 Contents iv

1 INTRODUCTION 1
 1.1 Unified Modeling Language 2

 1.1.1 Types of UML Diagrams 3
 1.1.2 UML Class Diagrams 5
 1.1.3 UML Sequence Diagrams 7
 1.1.4 UML Collaboration Diagrams 8

 1.2 XML and XML Schema 9

 1.2.1 eXtensible Markup Language 9
 1.2.2 XML Schema 10
 1.3 Need for Mapping 12
 1.4 Previous Work 13

 1.4.1 Wu and Hsieh Approach 13
 1.5 Our Approach 15

2 THE MAPPING 16
 2.1 XML Schema Definitions 17

 2.1.1 XML Schema Definition for Class Diagram 17
 2.1.2 XML Schema Definition for Sequence Diagram 19
 2.1.3 XML Schema Definition for Collaboration Diagram 20
 2.2 The Scheme of Mapping 22
 2.2.1 Class Diagram Mapping 22
 2.2.2 Sequence Diagram Mapping 25
 2.2.3 Collaboration Diagram Mapping 27
 2.3 Validations 29

 2.3.1 Class Diagrams 29
 2.3.2 Sequence Diagrams 30
 2.3.3 Collaboration Diagrams 30

3 DESIGN 31
 3.1 Architecture 32
 3.2 Input Design 33

 3.2.1 Class Diagram Input File 33
 3.2.2 Sequence Diagram Input File 34
 3.2.3 Collaboration Diagram Input File 34
 3.3 Output Design 36

 3.3.1 User Interface 37
 3.3.2 Outputs 39
 3.4 System Design 41

 3.4.1 Use Case Model 42
 3.4.2 Class Diagram Model 45

4 IMPLEMENTATION 48
 4.1 Tools and Technologies Used 49

 4.1.1 Java 49
 4.1.2 Java Swing and JFC 51
 4.2 Program Structure 52

5 DEMONSTRATION 57
 5.1 Class Diagram 57
 5.2 Sequence Diagram 62
 5.3 Collaboration Diagram 67

6 CONCLUSION 72
 6.1 Future Work 72

 BIBLIOGRAPHY 73

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 1

CHAPTER 1

INTRODUCTION

During the life cycle of a software project, voluminous data and information
are usually created along the delivery processes of software products. There
is always a need to share and exchange these engineering data and
information among related parties involved in the project. However, because
data models defined in the information management systems of various
parties are usually different, it is always difficult to directly map from one data
model to another for the purpose of information sharing and exchange. To
address the aforementioned information-sharing problem among various
parties, standardization of the data model for a software project is usually
inevitable. Due to the popularity of object-oriented modeling approach in
recent years, an object-oriented information model is often constructed to
represent the static structure and dynamic behaviors of the information and
processes in a software project and expressed by UML (Unified Modeling
Language), a popular tool for object-oriented modeling. Moreover, Extensible
Markup Language (XML) has become a de-facto standard for information
sharing and exchange in recent years.

Therefore, there is a need to define an XML schema based upon the UML
object-oriented information model to further facilitate information sharing.
However, the mapping is not an easy one because the data model of an XML
document is fundamentally different from that of a UML model. Especially the
UML models comprise of a lot of diagrams and related data, and the structure
of an XML document is hierarchical and the XML elements may be nested
and repeated. Although some commercial tools provide a little bit of such
mapping, but that is limited to the static aspects of a UML model and only
involves class diagrams. They do not map the dynamics of the UML model
like interaction diagrams, and state chart diagrams. Recently some
commercial softwares have also provided features for transforming
information in UML diagrams into XML documents. However, most of them
can only transform simple static UML models only. That is, if the UML
diagrams involve dynamics most of these tools are still incapable of making a
complete transformation.

Taking motivation from this we have worked on a mapping scheme for three
UML diagrams: class diagram, sequence diagram, and collaboration diagram.
This mapping scheme will map these UML diagrams to an XML document.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 2

1.1 UNIFIED MODELING LANGUAGE

The UML (Unified Modeling Language) is the successor to the wave of object-
oriented analysis and design (OOA&D) methods that appeared in late ‘80s
and ‘90s. It unifies the methods of Grady Booch, Rumbaugh (OMT), and
Jacobson, but its reach is wider than that. It is now a modeling language and
not mere method.

The Unified Modeling Language has quickly become the de-facto standard for
building Object-Oriented software. It is the fusion of the modeling technologies
of Grady Booch, James Rumbaugh and Ivar Jacobson. It is an Object
Management Group (OMG) standard for modeling object-oriented systems.

UML is a standard language and graphical notation for creating models of
business and technical systems. The OMG specification states:
"The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system. The UML offers a standard way to write a system's
blueprints, including conceptual things such as business processes and
system functions as well as concrete things such as programming language
statements, database schemas, and reusable software components."

The important point to note here is that UML is a 'language' for specifying and
not a method or procedure. The UML is used to define a software system; to
detail the artifacts in the system, to document and construct - it is the
language that the blueprint is written in. The UML may be used in a variety of
ways to support a software development methodology (such as the Rational
Unified Process) - but in itself it does not specify that methodology or process.

UML defines the notation and semantics for the following domains:
1. The User Interaction or Use Case Model - describes the boundary and

interaction between the system and users. Corresponds in some respects
to a requirement model.

2. The Logical or Class Model - describes the classes and objects that will
make up the system.

3. The Interaction or Collaboration Model - describes how objects in the
system will interact with each other to get work done.

4. The State or Dynamic Model - State charts describe the states or
conditions that classes assume over time. Activity graphs describe the
workflow the system will implement.

5. The Physical Component Model - describes the software (and sometimes
hardware components) that make up the system.

6. The Physical Deployment Model - describes the physical architecture and
the deployment of components on that hardware architecture.

The UML also defines extension mechanisms for extending the UML to meet
specialized needs (for example Business Process Modeling extensions).

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 3

1.1.1 TYPES OF UML DIAGRAMS

UML defines nine types of diagrams: class (package), object, use case,
sequence, collaboration, statechart, activity, component, and deployment.

Class Diagrams
Class diagrams are the backbone of almost
every object-oriented method, including UML.
They describe the static structure of a system.

Package Diagrams
Package diagrams are a subset of class
diagrams, but developers sometimes treat them
as a separate technique. Package diagrams
organize elements of a system into related
groups to minimize dependencies between
packages.

Object Diagrams
Object diagrams describe the static structure of
a system at a particular time. They can be used
to test class diagrams for accuracy.

Use Case Diagrams
Use case diagrams model the functionality of
system using actors and use cases.

Sequence Diagrams
Sequence diagrams describe interactions
among classes in terms of an exchange of
messages over time.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 4

Collaboration Diagrams
Collaboration diagrams represent interactions
between objects as a series of sequenced
messages. Collaboration diagrams describe
both the static structure and the dynamic
behavior of a system.

Statechart Diagrams
Statechart diagrams describe the dynamic
behavior of a system in response to external
stimuli. Statechart diagrams are especially
useful in modeling reactive objects whose
states are triggered by specific events.

Activity Diagrams
Activity diagrams illustrate the dynamic nature
of a system by modeling the flow of control
from activity to activity. An activity represents
an operation on some class in the system that
results in a change in the state of the system.
Typically, activity diagrams are used to model
workflow or business processes and internal
operation.

Component Diagrams
Component diagrams describe the organization
of physical software components, including
source code, run-time (binary) code, and
executables.

Deployment Diagrams
Deployment diagrams depict the physical
resources in a system, including nodes,
components, and connections.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 5

1.1.2 UML CLASS DIAGRAMS

Class diagrams are the backbone of almost every object-oriented method
including UML. They describe the static structure of a system. Classes
represent an abstraction of entities with common characteristics. Associations
represent the relationships between classes.

Classes
Illustrate classes with rectangles divided into
compartments. Place the name of the class in the
first partition (centered, bolded, and capitalized), list
the attributes in the second partition, and write
operations into the third.

Active Class
Active classes initiate and control the flow of activity,
while passive classes store data and serve other
classes. Illustrate active classes with a thicker border.

Visibility
Use visibility markers to signify who can access
the information contained within a class. Private
visibility hides information from anything outside
the class partition. Public visibility allows all other
classes to view the marked information. Protected
visibility allows child classes to access
information they inherited from a parent class.

Associations
Associations represent static relationships
between classes. Place association names
above, on, or below the association line. Use a
filled arrow to indicate the direction of the
relationship. Place roles near the end of an
association. Roles represent the way the two
classes see each other. It's uncommon to name
both the association and the class roles.

Multiplicity (Cardinality)
Place multiplicity notations near the ends
of an association. These symbols indicate
the number of instances of one class
linked to one instance of the other class.
For example, one company will have one
or more employees, but each employee
works for one company only.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 6

Constraint
Place constraints inside curly braces {}.

Composition and Aggregation
Composition is a special type of aggregation that
denotes a strong ownership between Class A, the
whole, and Class B, its part. Illustrate composition
with a filled diamond.

Use a hollow diamond to represent a simple
aggregation relationship, in which the "whole"
class plays a more important role than the "part"
class, but the two classes are not dependent on
each other. The diamond end in both a

composition and aggregation relationship points toward the "whole" class or
the aggregate.

Generalization
Generalization is another name for inheritance
or an "is a" relationship. It refers to a
relationship between two classes where one
class is a specialized version of another. For
example, Honda is a type of car. So the class
Honda would have a generalization
relationship with the class car.

In real life coding examples, the difference between inheritance and
aggregation can be confusing. If you have an aggregation relationship, the
aggregate (the whole) can access only the PUBLIC functions of the part class.
On the other hand, inheritance allows the inheriting class to access both the
PUBLIC and PROTECTED functions of the superclass.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 7

1.1.3 UML SEQUENCE DIAGRAMS

Sequence diagrams describe interactions among classes in terms of an
exchange of messages over time.

Class roles
Class roles describe the way an object will behave in
context. Use the UML object symbol to illustrate class

roles, but don't list object attributes.

Activation
Activation boxes represent the time an object
needs to complete a task.

Messages
Messages are arrows that represent
communication between objects. Use half-
arrowed lines to represent asynchronous
messages. Asynchronous messages are sent
from an object that will not wait for a response
from the receiver before continuing its tasks.

Lifelines
Lifelines are vertical dashed lines that indicate
the object's presence over time.

Destroying Objects
Objects can be terminated early using an arrow
labeled "< < destroy > >" that points to an X.

Loops
A repetition or loop within a sequence diagram
is depicted as a rectangle. Place the condition
for exiting the loop at the bottom left corner in
square brackets [].

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 8

1.1.4 UML COLLABORATION DIAGRAMS

A collaboration diagram describes interactions among objects in terms of
sequenced messages. Collaboration diagrams represent a combination of
information taken from class, sequence, and use case diagrams describing
both the static structure and dynamic behavior of a system.

Class roles
Class roles describe how objects behave. Use the UML
object symbol to illustrate class roles, but don't list object
attributes.

Messages
Unlike sequence diagrams, collaboration diagrams do
not have an explicit way to denote time and instead
number messages in order of execution. Sequence
numbering can become nested using the Dewey
decimal system. For example, nested messages
under the first message are labeled 1.1, 1.2, 1.3, and
so on. The a condition for a message is usually

placed in square brackets immediately following the sequence number. Use a
* after the sequence number to indicate a loop.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 9

1.2 XML AND XML SCHEMA

1.2.1 EXTENSIBLE MARKUP LANGUAGE

XML stands for eXtensible Markup Language. XML is a markup language
much like HTML. XML was designed to describe data. XML tags are not
predefined. You must define your own tags. XML uses a Document Type
Definition (DTD) or an XML Schema to describe the data. XML with a DTD or
XML Schema is designed to be self-descriptive.

XML was designed to carry data. XML is not a replacement for HTML. XML
and HTML were designed with different goals:

• XML was designed to describe data and to focus on what data is.

• HTML was designed to display data and to focus on how data looks.

• HTML is about displaying information, while XML is about describing
information.

XML was not designed to DO anything. Maybe it is a little hard to understand,
but XML does not DO anything. XML is created to structure, store and to send
information. E.g. the following example is a note to Tove from Jani, stored as
XML:

<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

The note has a header and a message body. It also has sender and receiver
information. But still, this XML document does not DO anything. It is just pure
information wrapped in XML tags. Someone must write a piece of software to
send, receive or display it.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 10

1.2.2 XML SCHEMA

XML Schema is an XML based schema description language. An XML
schema describes the structure, contents and semantics of an XML
document. It is an W3C recommendation. It can be referenced through any
standard XML parser.

The XML Schema language is also referred to as XML Schema Definition
(XSD). The purpose of an XML Schema is to define the legal building blocks
of an XML document, just like a DTD.

An XML Schema defines elements and attributes that can appear in a
document, which elements are child elements, their order and number,
whether an element is empty or can include text, data types for elements and
attributes, and default and fixed values for elements and attributes

Very soon XML Schemas will be used in most Web applications as a
replacement for DTDs because, XML Schemas are extensible to future
additions, richer and more useful than DTDs, written in XML, support data
types, entities, constraints, namespaces, and OOP features like inheritance,
encapsulation etc

XML Schema was originally proposed by Microsoft, but became an official
W3C recommendation in May 2001. The specification is now stable and has
been reviewed by the W3C Membership.

One of the greatest strength of XML Schemas is the support for data types.
With the support for data types it is easier to describe permissible document
content, validate the correctness of data, work with data from a database,
define data facets (restrictions on data), define data patterns (data formats),
and convert data between different data types

Another great strength about XML Schemas is that they are written in XML.
Since XML Schemas are written in XML, you don't have to learn another
language, use your XML editor to edit your Schema files, use your XML
parser to parse your Schema files, manipulate your Schema with the XML
DOM, and transform your Schema with XSLT

When data is sent from a sender to a receiver it is essential that both parts
have the same "expectations" about the content. With XML Schemas, the
sender can describe the data in a way that the receiver will understand. E.g. a
date like 1999-03-11 might (in some countries) be interpreted as 3. November
or (in some other countries) as 11. March, but an XML element with a data
type like this:

<date type="date">1999-03-11</date>

ensures a mutual understanding of the content because the XML data type
date requires the format CCYY-MM-DD.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 11

XML Schemas are extensible, just like XML, because they are written in XML.
With an extensible Schema definition you can reuse your Schema in other
Schemas, create your own data types derived from standard types, and
reference multiple schemas from the same document

A well-formed XML document is a document that conforms to the XML syntax
rules. It must begin with the XML declaration, must have one unique root
element, all start tags must match end-tags with case sensitive XML tags, all
elements must be closed and properly nested, the attribute values must be
quoted, and XML entities must be used for special characters. Even if
documents are Well-Formed they can still contain errors, and those errors can
have serious consequences. Think of this situation: you order 5 gross of laser
printers, instead of 5 laser printers. With XML Schemas, your validating
software can catch most of these errors.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 12

1.3 NEED FOR MAPPING

As the application of the computer-based solutions has increased, these
solutions started to grow more and more complex in nature. This prompted
the increase in size of the development staff as well as the development site.
The development sites tend to be scattered across geographical locations
across the globe. Thus the development data was also required to be moved
across these locations. Since the parties involved in the development process
share large volumes of data, mostly the models of the system being
developed, so it was required that this data be transferred across the sites
over the networks. As UML is a standard design modeling language and XML
is widely being accepted as information representation, sharing, and
exchange language over Internet, we need to map the UML diagrams to XML
documents.

Also, the development process nowadays has become more and more model-
driven. Developers all around the world are striving hard to cut the design
costs, prompting them to share design models for similar problems. So they
are also pressing hard for such efforts which help them share these models
over Internet.

Thus, we find that there has been enough encouragement to work for such an
mapping scheme, which will be helping us convert the UML diagrams to XML
documents.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 13

1.4 PREVIOUS WORK

Since both the technologies UML and XML are just beginning to grow, not
much work has been done in the field of mapping between these two. There
have been efforts from David Carlson, Rational Software Corporation, I-Chen
Wu and Shang-Hsien Hsieh in this area. All of them have followed the
approach of mapping between XML Schema Documents and UML.

Before working on our mapping scheme we went through the approaches
used by David Carlson, Grady Booch et al at Rational, Wu and Hsieh to map
class diagrams to XML documents using XML Schema. All of them have
converted the UML class diagram to XML Schema or vice versa.

Booch et al worked to map the XSD to UML class diagrams, in order to model
the XML Schemas using UML. Their intention was not to map the UML
diagrams to XML. David Carlson also worked to map the XML vocabularies
with UML with slightly different approach by using stereotypes in UML, unlike
Booch et al, who approached by trying to use more conventional features of
UML. Both these works helped a lot in the mapping scheme, which we
developed.

Wu and Hsieh worked on the same lines as ours i.e. mapping UML diagrams
to XML. They created XSD from the class diagrams, just opposite to what
Booch and Carlson did. But it is a bit complex approach to generate the XSD
for each class diagram. Again this way we can't map the sequence and
collaboration diagrams.

1.4.1 WU AND HSIEH APPROACH

In this approach, XML Schema is constructed from UML model through the
concept of the XML Metadata Interchange specification (XMI), which defines a
rigorous approach for generating an XML DTD from a metamodel definition,
and slightly extends the approach of XMI for mapping object-oriented data
model expressed by UML to XML Schema. The transformation rules
employed in the mapping process are discussed as follows:

Mapping UML Classes to XML Elements

The UML Classes show the structural and behavioral features in the object-
oriented Model. These features include attributes, association, aggregation,
and composition. On the other hand, XML elements serve as a container for
attribute and child elements. Thus, mapping UML classes to XML elements
are quite straightforward.

Mapping UML Attributes to XML Attributes or Elements

Basically, either a primitive data type or an enumeration of UML attributes
may be represented as an XML attribute. However, XML parser removes all
extra whitespace characters, such as tabs, linefeeds, etc. That makes XML
attributes mainly appropriate for simple datatypes of short string values. On

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 14

the other hand, one can map attributes of an UML class to separate child
elements of the corresponding XML element of the class.

Flagging UML Object Relationships by an XML Attribute

The current version (Version 1.0) of XML Schema does not yet have direct
and full supports for expressing a complete object-oriented model, especially
the distinction between the delegation and aggregation relationships that
commonly exist in the model. Therefore, this work employs a special attribute
named “relation” with a value of either “delegation” or “aggregation” to flag the
relationship between the owning XML element and its child elements.

Constraints on Naming XML Elements

In general, the UML class name is directly used as the XML tag name in the
mapping process. However, there are certain constraints we must comply
when naming the XML elements:
1. The tag name cannot have spaces in it, but symbols like “.”, “-”, and “_” are

allowed.
2. The tag name should not start with the string “XML”.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 15

1.5 OUR APPROACH

In this work we have proposed an approach to map the most commonly used
UML diagrams to XML documents. These include class diagrams, sequence
diagrams, and collaboration diagrams. The rest of the models can be mapped
with the same approach.

This approach is slightly different than the approach proposed by Wu and
Hsieh. We have defined an XML Schema Definition for the class diagram, the
sequence diagram, and the collaboration diagram, which will be defining the
structure of the documents representing the class, sequence and
collaboration diagrams. The XML document mapped from the UML diagrams
will reference these XSDs to get the document structure. These XSDs will be
discussed in the Chapter 2. Thus a single schema definition for class
diagrams will define the structure for all the class diagrams. Similarly a single
schema definition for sequence diagrams will be enough for all the sequence
diagrams, and there will be a single schema definition for all the collaboration
diagrams. This is done because basic elements of a class diagram are
similar. It is true for the sequence diagram and the collaboration diagrams as
well.

We have also developed a mapping scheme for mapping the UML diagrams
to XML documents with these structures. This scheme will also be discussed
in the Chapter 2. Since the structure of all the class diagrams are similar so
with this slight variation in approach of Wu and Hseih, we can easily perform
the mappings in a more general and efficient way.

We have also discussed the validations required for these mapping schemes.
These will validate the generated class diagrams, sequence diagrams, and
collaboration diagrams. Since, this restrictions can’t be put later on in the
document, we will force these prior to the mapping on the structures to be
mapped to XML. The validations for the UML diagrams are discussed in
Chapter 2.

The Chapter 3 discusses the design of the system worked out to automate
this mapping scheme. This will present a Use case, and class diagram model
of the system apart from providing the system architecture, input design and
output design.

The Chapter 4 discusses the implementation of the design discussed in
Chapter 3, thus realization of the system design. It discusses the
methodology, user interface, and the outputs produced by the system.

The Chapter 5 demonstrates the automated system with an example taken
from the UML text.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 16

CHAPTER 2

THE MAPPING

The work of mapping the UML diagrams, i.e. class diagram, sequence diagram
and collaboration diagram, is divided in several sub-tasks in our approach. This
has been one of the factors in favor of the adoption of this approach apart from
being logical, efficient, and general approach.

First, we have defined the XML Schema Definition (XSD) for class diagram. A
similar XSD for sequence diagram, and collaboration diagram is also defined.
These XSDs are stored in the folder where we have to put the XML document of
the diagram in order to get a reference to these schemas. First section of this
chapter explains these XSDs.

After that we have specified a mapping scheme that will convert a class diagram
into an XML document referencing the above mentioned XSD for class diagrams.
Similarly, we have specified the mapping schemes for sequence diagrams and
collaboration diagrams as well, which will be referencing their respective XSDs.
The second section of this chapter explains the mapping scheme.

Finally, we have specified the ways of validating the class diagrams, sequence
diagrams and the collaboration diagrams. The class diagram can be validated on
its own, but the validation of the sequence and the collaboration diagrams involve
the class diagrams they are using. So, we must specify the class diagrams
against which they can be validated. The validation rules of these diagrams are
listed in the third section of the chapter.

This chapter deals with the capture of the above specifications and ways of
integrating them.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 17

2.1 XML SCHEMA DEFINITIONS

The first part of the research involved the designing of XML Schema Definition for
the class diagram, sequence diagram, and the collaboration diagram. In this
section we have presented the XML Schema Definition for these diagram. In
order to make these diagrams more understandable we have also written the
corresponding definitions in Bachaus-Naur Form.

2.1.1 XML SCHEMA DEFINITION FOR CLASS DIAGRAM

The XML Schema Definition used for a class diagram is given below:

<?xml version="1.0" ?>
<Schema name="classDiagram.xsd" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<!-- 'diagram' is the root node, including 'class' elements -->
 <ElementType name="diagram">
 <group minOccurs="1" maxOccurs="*">
 <element type="class" />
 </group>
 </ElementType>
 <!-- 'class' schema definition -->
 <ElementType name="class" content="eltOnly">
 <attribute type="name" />
 <element type="instance-variable" />
 <element type="operator" />
 <element type="constraint" />
 <element type="association" />
 <element type="composition" />
 <element type="aggregation" />
 <element type="generalization" />
 </ElementType>
 <!-- 'name'attribute definition -->
 <AttributeType name="name" dt:type="string" required="yes" />
 <!-- 'instance-variable' schema definition -->
 <ElementType name="instance-variable" content="textOnly" dt:type="id" />
 <!-- 'operator' schema definition -->
 <ElementType name="operator" content="eltOnly">
 <attribute type="name" />
 <element type="args-type" />
 <element type="ret-type" />
 </ElementType>
 <!-- 'constraint' schema definition -->
 <ElementType name="constraint" content="textOnly" />
 <!-- 'association' schema definition -->
 <ElementType name="association" content="eltOnly">
 <attribute type="role-name" />
 <attribute type="multiplicity" />
 <element type="class-name" />
 </ElementType>
 <!-- 'composition' schema definition -->
 <ElementType name="composition" content="eltOnly">
 <attribute type="multiplicity" />
 <element type="class-name" />
 </ElementType>
 <!-- 'aggregation' schema definition -->

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 18

 <ElementType name="aggregation" content="eltOnly">
 <attribute type="multiplicity" />
 <element type="class-name" />
 </ElementType>
 <!-- 'generalization' schema definition -->
 <ElementType name="generalization" content="eltOnly">
 <element type="class-name" />
 </ElementType>
 <!-- 'args-type' schema definition -->
 <ElementType name="args-type" content="textOnly" />
 <!-- 'ret-type' schema definition -->
 <ElementType name="ret-type" content="textOnly" />
 <!-- 'multiplicity' attribute definition -->
 <AttributeType name="multiplicity" dt:type="enumeration" dt:values="optional one many"
required="no" default="optional" />
 <!-- 'role-name' attribute definition -->
 <AttributeType name="role-name" dt:type="string" required="no" />
 <!-- 'class-name' Schema Definition -->
 <ElementType name="class-name" content="textOnly" />
</Schema>

The equivalent BNF for the class diagram schema is:

1. <role-name> -> string
2. <name> -> string
3. <multiplicity> -> optional | one | many
4. <class-name> -> text
5. <ret-type> -> text
6. <args-type> -> text
7. <constraint> -> text
8. <instance-variable> -> text
9. <generalization> -> <class-name>
10. <aggregation> -> <multiplicity> <class-name>
11. <composition> -> <multiplicity> <class-name>
12. <association> -> <role-name> <multiplicity> <class-name>
13. <operator> -> <name> <args-type> <ret-type>
14. <class> -> <instance-variable>* <operator>* <constraint>* <association>* <composition>*

<aggregation>* <generalization>*
15. <diagram> -> <class>

+

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 19

2.1.2 XML SCHEMA DEFINITION FOR SEQUENCE DIAGRAM

The XML Schema Definition used for Sequence Diagram is given below:

<?xml version="1.0" ?>
<Schema name="sequenceDiagram.xsd" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <!-- 'diagram' is the root node, including 'class-operator' elements -->
 <ElementType name="diagram">
 <group minOccurs="1" maxOccurs="*">
 <element type="class-name" /></group>
 </ElementType>
 <!-- 'class-name' schema definition -->
 <ElementType name="class-name">
 <attribute type="name" />
 <group minOccurs="0" maxOccurs="*">
 <element type="class-operator" /></group>
 </ElementType>
 <!-- 'class-operator' schema definition -->
 <ElementType name="class-operator" content="eltOnly">
 <attribute type="multiplicity" />
 <attribute type="condition" />
 <element type="method-name" />
 <element type="args-type" />
 <element type="class-name" />
 </ElementType>
 <!-- 'method-name' schema definition -->
 <ElementType name="method-name" content="textOnly" dt:type="id" />
 <!-- 'args-type' schema definition -->
 <ElementType name="args-type" content="textOnly" />
 <!-- 'multiplicity' attribute definition -->
 <AttributeType name="multiplicity" dt:type="enumeration" dt:values="optional one many"
required="no" default="one" />
 <!-- 'name' attribute definition -->
 <AttributeType name="name" dt:type="String" required="yes" />
 <!-- 'condition' attribute definition -->
 <AttributeType name="condition" dt:type="string" required="no" default="true" />
</Schema>

The equivalent BNF for the sequence diagram schema is:

1. <condition> -> string
2. <name> -> string
3. <multiplicity> -> optional | one | many
4. <args-type> -> text
5. <method-name> -> text
6. <class-operator> -> <condition> <multiplicity> <method-name> <args-type> <class-name>
7. <class-name> -> <name> <class-operator>*
8. <diagram> -> -> <class-name>*

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 20

2.1.3 XML SCHEMA DEFINITION FOR COLLABORATION DIAGRAM

The XML Schema Definition used for Collaboration Diagram is given below:

<?xml version="1.0" ?>
<Schema name="collaborationDiagram.xsd" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <!-- 'diagram' is the root node, including 'class-operator' elements -->
 <ElementType name="diagram">
 <group minOccurs="1" maxOccurs="1">
 <element type="class" />
 </group>
 </ElementType>
 <!-- 'class-operator' schema definition -->
 <ElementType name="class">
 <attribute type="name" />
 <element type="instance-name" />
 <element type="class-operator" />
 </ElementType>
 <!-- 'class-operator' schema definition -->
 <ElementType name="class-operator" content="eltOnly">
 <attribute type="name" />
 <attribute type="sequence-number" />
 <attribute type="multiplicity" />
 <attribute type="condition" />
 <element type="args-type" />
 <element type="class" />
 </ElementType>
 <!-- 'name'attribute definition -->
 <AttributeType name="name" dt:type="string" required="yes" />
 <!-- 'args-type' schema definition -->
 <ElementType name="args-type" content="textOnly" />
 <!-- 'instance-name' schema definition -->
 <ElementType name="instance-name" content="textOnly" />
 <!-- 'multiplicity' attribute definition -->
 <AttributeType name="multiplicity" dt:type="enumeration" dt:values="none one many"
required="no" default="one" />
 <!-- 'condition' attribute definition -->
 <AttributeType name="condition" dt:type="string" required="no" default="true" />
 <!-- 'sequence-number' attribute definition -->
 <AttributeType name="sequence-number" dt:type="string" required="yes" />
</Schema>

The equivalent BNF for the collaboration diagram schema is:

1. <sequence-number> -> string
2. <condition> -> string
3. <name> -> string
4. <multiplicity> -> none | one | many
5. <instance-name> -> text
6. <args-type> -> text
7. <class-operator> -> <name> <sequence-number> <condition> <multiplicity> <args-type> <class>
8. <class> -> <name> <instance-name> <class-operator>*
9. <diagram> -> <class>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 21

The above mentioned XML Schema Definitions have been used in the mapping
schemes for class diagrams, sequence diagrams and collaboration diagrams
respectively. These will act as the structure definitions for the XML documents
produced through the mapping schemes for the UML class, sequence, and
collaboration diagrams respectively. The XML document written on the basis of
these structures will have to reference these definitions to get their structures.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 22

2.2 THE SCHEME OF MAPPING

The scheme of mapping is the core of the thesis work. It explains the way the
actual mapping from UML diagrams to XML will be taking place. We will be
discussing the mapping schemes for class diagrams, sequence diagrams, and
collaboration diagrams one by one in the next three sub-sections.

2.2.1 CLASS DIAGRAM MAPPING

The mapping of UML class diagram to XML is performed in the following manner:

1. First of all, the root node <diagram> with property value ‘xmlns’ set to class
diagram XML Schema Definition is generated.

2. Now, all the classes in the class diagram are taken one by one and mapped
inside the <diagram> node as <class> nodes with property ‘name’ set to class
name.

3. Inside node <class>, first of all instance variables are mapped as <instance-
variable> nodes.

4. Next, the operators are mapped as <operator> nodes with property ‘name’ set
to operator name, and child nodes <args-type> and <ret-type> containing the
argument list and return type of the operator respectively.

5. The constraints, if any, of the class are enlisted next in the <constraint> node.
6. Following constraints will be the association contribution of the class in an

association of the class diagram. This will be enlisted in the <association>
node. This node will have two properties, namely ‘role-name’ set to role name
of the class in the association, and ‘multiplicity’. It will also have a child node
<class-name> containing the name of the class with which the association is
made.

7. Next are the composition and aggregation contribution of the class, enlisted in
the nodes <composition> and <aggregation>. These will have an attribute
‘multiplicity’, and a child node <class-name> having the name of the class with
which the aggregation/composition relationship is there.

8. Finally, there is the <generalization> node is there, which will have the name
of the class in a child node <class-name> that has been inherited by the
class.

Using above mapping scheme we can map the class diagram on the next page to
the XML document followed by it.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 23

<diagram xmlns="x-schema:classDiagram.xsd">
 <class name="Order">
 <instance-variable>dateRecieved</instance-variable>
 <instance-variable>isPrepaid</instance-variable>
 <instance-variable>number:String</instance-variable>
 <instance-variable>price:Money</instance-variable>
 <operator name="dispatch" />
 <operator name="close" />

 <constraint>{if Order.customer.creditRating is "poor" then Order.isPrepaid must be
"true"}</constraint>
 <association multiplicity="many">
 <class-name>Customer</class-name>
 </association>
 <association multiplicity="one">
 <class-name>OrderLine</class-name>
 </association>
 </class>

 <class name="Customer">
 <instance-variable>name</instance-variable>
 <instance-variable>address</instance-variable>
 <operator name="creditRating">
 <ret-type>String</ret-type>
 </operator>
 <association multiplicity="one">

 <class-name>Order</class-name>
 </association>
 </class>

 <class name="OrderLine">

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 24

 <instance-variable>quantity:Integer</instance-variable>
 <instance-variable>price:Money</instance-variable>
 <instance-variable>isSatisfied:Boolean</instance-variable>
 <association multiplicity="many" role-name="line items">

 <class-name>Order</class-name>
 </association>
 <association multiplicity="many">

 <class-name>Product</class-name>
 </association>
 </class>

 <class name="CorporateCustomer">

 <instance-variable>contactName</instance-variable>
 <instance-variable>creditRating</instance-variable>
 <instance-variable>creditLimit</instance-variable>
 <operator name="remind" />
 <operator name="billForMonth">

 <args-type>Integer</args-type>
 </operator>
 <association multiplicity="many">
 <class-name>Employee</class-name>
 </association>
 <generalization>
 <class-name>Customer</class-name>
 </generalization>
 </class>

 <class name="PersonalCustomer">
 <instance-variable>creditCard#</instance-variable>
 <constraint>{creditRating() == "poor"}</constraint>
 <generalization>
 <class-name>Customer</class-name>
 </generalization>
 </class>

 <class name="Employee">
 <association multiplicity="optional" role-name="sales rep">
 <class-name>CorporateCustomer</class-name>
 </association>
 </class>

 <class name="Product">
 <association multiplicity="one">
 <class-name>OrderLine</class-name>
 </association>
 </class>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 25

2.2.2 SEQUENCE DIAGRAM MAPPING

The mapping scheme for the UML sequence diagrams is as follows:

1. The root node <diagram> is set with the property ‘xmlns’ as the name of the

XML Schema Definition for the UML sequence diagram.
2. The first instance object is taken as the property ‘name’ of the <class-name>

node. The <class-name> node will act as the parent node to all the messages
represented by the <class-operator> nodes.

3. The <class-operator> node will have two properties ‘multiplicity’ and
‘condition’, and three child nodes, namely <method-name>, <args-type>, and
<class-name>.

4. The node <method-name> will mark up the name of the message, and the
node <args-type> will mark up the return-type and arguments of the message.
The third node <class-name> will enclose the class instance to which the
message goes.

For demonstration we can map the following sequence diagram to the following
XML document.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 26

<diagram xmlns="x-schema:sequenceDiagram.xsd">
 <class-name name="OrderEntryWindow">
 <class-operator condition="true" multiplicity="one">
 <method-name>prepare</method-name>
 <class-name name="Order">
 <class-operator multiplicity="many" condition="true">

 <method-name>prepare</method-name>
 <class-name name="OrderLine">
 <class-operator condition="true" multiplicity="one">
 <method-name>checkStock</method-name>
 <args-type>retval=hasStock</args-type>
 <class-name name="StockItem" />
 </class-operator>
 <class-operator condition="hasStock" multiplicity="one">
 <method-name>remove</method-name>
 <class-name name="StockItem">
 <class-operator condition="true" multiplicity="one">
 <method-name>needToReorder</method-name>
 <args-type>retval=needsReorder</args-type>
 <class-name name="StockItem" />
 </class-operator>
 <class-operator condition="needsReorder" multiplicity="one">
 <method-name>new</method-name>
 <class-name name="ReorderItem" />
 </class-operator>
 </class-name>
 </class-operator>
 <class-operator condition="hasStock" multiplicity="one">

 <method-name>new</method-name>
 <class-name name="DeliveryItem" />
 </class-operator>
 </class-name>
 </class-operator>
 </class-name>
 </class-operator>
 </class-name>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 27

2.2.3 COLLABORATION DIAGRAM MAPPING

The following mapping scheme will be used for mapping the UML collaboration
diagram:

1. The root node <diagram> will contain all the diagram structure. The ‘xmlns’

property of the <diagram> node is set as the XML Schema Definition
corresponding to collaboration diagram.

2. The <diagram> node will have a child node <class>, which will be referring
the instance of the first class in the collaboration diagram. The node <class>
will have an attribute name, and two child nodes <instance-name> and
<class-operator>.

3. The node <instance-name> will mark up the name of the instance, if any. The
node <class-operator> will have four attributes, ‘name’, ‘sequence-number’,
‘multiplicity’, and ‘condition’ of the message; and two child nodes <args-type>
and <class>.

4. The node <args-type> will represent the return type and arguments of the
message. The node <class> will mark up the class to which the message
goes.

The above scheme will map the following collaboration diagram as under:

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 28

<diagram xmlns="x-schema:collaborationDiagram.xsd">
 <class name="OrderEntryWindow">
 <class-operator name="prepare" sequence-number="1" condition="true" multiplicity="one">
 <class name="Order">
 <class-operator name="prepare" sequence-number="2" multiplicity="many" condition="for all
order lines">
 <class name="OrderLine">
 <instance-name>Macallan Line</instance-name>
 <class-operator name="checkStock" sequence-number="3" condition="true"
multiplicity="one">
 <args-type>retval=hasStock</args-type>
 <class name="StockItem">
 <instance-name>Macallan Stock</instance-name>
 </class>
 </class-operator>
 <class-operator name="remove" sequence-number="4" condition="hasStock"
multiplicity="one">
 <class name="StockItem">

 <instance-name>Macallan Stock</instance-name>
 <class-operator name="needToReorder" sequence-number="5" condition="true"
multiplicity="one">
 <args-type>retval=needsReorder</args-type>
 <class name="StockItem">

 <instance-name>Macallan Stock</instance-name>
 </class>
 </class-operator>
 <class-operator name="new" sequence-number="6" condition="needsReorder"
multiplicity="one">
 <class name="ReorderItem" />
 </class-operator>
 </class>
 </class-operator>
 <class-operator name="new" sequence-number="7" condition="hasStock"
multiplicity="one">
 <class name="DeliveryItem" />

 </class-operator>
 </class>
 </class-operator>
 </class>
 </class-operator>
 </class>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 29

2.3 VALIDATIONS

Generally speaking, software engineering researchers seek better ways to
develop and evaluate software. They are motivated by practical problems, and
key objectives of the research are often quality, cost, and timeliness of software
products. This section presents a character of the validation we will provide. This
has been derived from the text example and demonstration problem we have
studied. More rigorous validations can be forced, but we have kept it general as
we are not referring to a specific domain of software solution but the process of
the development of the process by using the methods of UML.

Good research requires not only a result, but also clear and convincing evidence
that the result is sound. This evidence should be based on experience or
systematic analysis, not simply persuasive argument or textbook examples. So
while dealing with the domains of applications we should apply the validation
more strictly than the way we have followed. Our approach of not going stricter is
an indication that validation in practice is not always clear and convincing.

The system validation refers to the development of the right solution for a given
problem. So, in order to ensure the right way of mapping we must be aware of
the ways to validate the class diagrams, sequence diagrams, and collaboration
diagrams with respect to the class diagram(s). This will ensure that we are doing
the right sort of mapping once we have a correct class, sequence, or
collaboration diagram. If this check is not performed we may end up doing a
mapping for virtually no use. Hence, the process of validation of the diagram is
one of the most important aspect in our mapping scheme.

Keeping the above philosophy we will be proposing the validation approach for us
as follows.

2.3.1 CLASS DIAGRAMS

Validating of the class diagrams is most important for getting an error free
product. The most important aspects are:

1. The class names in a namespace must be unique. These are case sensitive.
2. The association should be contributed by both the classes. It means that if

class A shows an association with class B, then class B must also have an
association to class A. Both the classes A and B must be there in the same
class diagram.

3. Similarly, the composition and the aggregation will also be contributed by both
classes, which must be in the same class diagram. Although it does not seem
to be following the actual UML definitions of these relationships, but have
done so in order to keep the contribution of each class in the relationships
with their definition.

4. Generalization should be inherited from a class in the same class diagram.
5. Additionally we can also add the UML naming conventions as the validation

rules, but it is better that these things be put on only if we are following the
stricter rules, in real time development environment as well.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 30

2.3.2 SEQUENCE DIAGRAMS

Validating sequence diagrams is a bit more complex than the class diagrams, as
it involves the class diagrams, which we are referring to in the sequence
diagrams as well. So we can follow the following restrictions:

1. The class diagram(s) we are referring to in the sequence diagram must be

valid.
2. The classes in the sequence diagram must be in the class diagram(s).
3. The message names must be either specified as a general operator, like

‘new’, or in the corresponding class as operator, or the class inherited by this
class, of the class diagram.

4. Stricter rules may involve the prototype of the messages, although at every
place it is not recommended, since the purpose of sequence diagram is not to
enforce the structure.

2.3.3 COLLABORATION DIAGRAMS

Like sequence diagram the collaboration diagrams are also validating against
the classes. The above rules may be reproduced for the collaboration diagram:

1. The class diagrams we are referring to in the collaboration diagram must be

valid.
2. The classes in the collaboration diagram must be in the class diagram(s).
3. The message names must be either specified as a general operator, like

‘new’, or in the corresponding class as operator, or the class inherited by this
class, of the class diagram.

4. Stricter rules may involve the prototype of the messages, although at every
place it is not recommended, since the purpose of collaboration diagram is not
to enforce the structure.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 31

CHAPTER 3

DESIGN

In this chapter we have presented the logical design of the system we have
developed to automate the process of mapping UML diagrams to XML
documents using the mapping scheme presented in the previous chapter. Thus,
this system is as per the specifications provided in chapter 2. The major activities
involved in the development of this design were reviewing the previous
specifications, designing the system architecture and components, and
presenting the complete design. During this process, we have sticked to the
object-oriented software engineering design guidelines that helped us achieve an
efficient, reliable and maintainable system design.

The design of the system developed by us has considered the requirements, data
and processing characteristics as specified previously to specify its architecture
and the input and output design. We have developed a modular and object-
oriented system design as presented later in this chapter with the help of use
case and class diagram models. Since the output of the system must be
according to the requirements, we have to keep on reviewing these continuously
during the design process as and when required.

The chapter includes four sections: Architecture, Input Design, Output Design,
and System Design.

The first section discusses the architecture of the solution we have developed. It
will explain various layers and components of the system, called “UML to XML
converter”, along with the system flow.

The second section discusses the Input Design of the system. It explains the way
inputs will be provided to the system. We have also discussed the format of the
input and the input media.

The third section is on Output Design. It discusses the way the system will
produce the outputs. It will also explain the format of the output and output media.

The last section explains the System Design. It expresses the complete system
design of our system. It presents the use case analysis and class diagrams of our
system. It expresses the integration of the components of our system in one
design.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 32

3.1 ARCHITECTURE

Our system will be having the abstract machine model of the software
architecture. The system will be organized into a series of layers of sub-systems,
each of which will be providing a set of services to our systems. Each of these
layers may again be termed as abstract machine performing the specific task.

The system will be having a menu based GUI interface with file based input and
the output will directed to the files as well, however the input will be read and
displayed in the input pane of the system and the output will also be displayed in
the output pane of the GUI. A system log will also be maintained for the current
job.

The system architecture of our system can be demonstrated through the
following figure.

The system will be functioning as per the above figure. User will interact with the
system through the menu, i.e. the menu will act as the interface for the user. The
input structure will be specified in the input file. The input structure will be
displayed in the Input Pane. After generating the output in XML format it will be
displayed in the Output Pane. The tasks performed and the status of the tasks
will be displayed in the Log Pane. Finally the generated output is stored in the
Output File which will be an .XML file.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 33

3.2 INPUT DESIGN

Input quality and accuracy are essential for every successful information system.
With today’s technology, a wide variety of input media is available, including
optical, voice and magnetic recognition devices: special-purpose terminals; and
graphical input devices. Input design includes selecting appropriate input media
and methods, developing efficient input procedures, reducing input volume and
avoiding input errors. In carrying out these tasks, the systems analyst must
consider three key procedures: data capture, data entry and data input. Data
capture involves identifying and recording source data. Data entry involves
converting source data into a computer-readable form. Data input involves the
actual introduction of data into the information system.

To help reduce input errors, data is validated by one or more checks of
sequence, existence, range and limit, reasonableness, validity, combination and
batch control. Source document design involves forms used to request and
collect input data, to trigger or authorize and input action and to provide a record
of the original transaction. Input record design for batch input data involves
placing data in a temporary file that becomes the input file for data entry. We
have followed the same method for our input design. We will be providing the
input as a diagram file saved in the text format. The format of our diagrams can
be specified in Backaus-Naur Form as given in next three sub-sections.

3.2.1 CLASS DIAGRAM INPUT FILE

1. Class-name => text
2. Instance-number => number
3. Operator-number => number
4. Association-number => number
5. Composition-number => number
6. Aggregation-number => number
7. Generalization-number => number
8. Operator-name => text
9. Multiplicity => one | many | optional
10. Role-name => text
11. Ret-type => text
12. Args-type => text
13. Operator => Operator-name; Args-type; Ret-type
14. Constraint => {text}
15. Association => Multiplicity; Role-name; Class-name
16. Composition => Multiplicity; Class-name
17. Aggregation => Multiplicity; Class-name
18. Generalization => Class-name
19. Instance-variable => text
20. Class-record => Class-name; Instance-number; {Instance-variable;}

Instance-number
 Operator-

number; {Operator;}
Operator-number

 Constraint; Association-number; {Association;}
Association-number

Composition-number; {Composition;}

 Composition-number
 Aggregation-number; {Aggregation;}

Aggregation-number
 Generalization-number; {Generalization;}

 Generalization-number

21. Class-diagram => {Class-record <return>}*

Hence the sample input file for the class diagram in the previous chapter is as
given on the next page.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 34

Order; 4; dateRecieved; isPrepaid; number:String; price:Money; 2; dispatch;;; close;;; {if
Order.customer.creditRating is "poor", then Order.isPrepaid must be true}; 2; many;;Customer;
one;;OrderLine; 0; 0; 0;
Customer; 2; name; address; 1; creditRating;;String; ; 1; one;;Order; 0; 0; 0;
OrderLine; 3; quantity:Integer; price:Money; isSatisfied:Boolean; 0; ; 2; many;line items;Order;
many;;Product; 0; 0; 0;
Product; 0; 0; ; 1; one;;OrderLine; 0; 0; 0;
CorporateCustomer; 3; contactName; creditRating; creditLimit; 2; remind;;; billForMonth;Integer;; ;
1; many;;Employee; 0; 0; 1; Customer;
PersonalCustomer; 1; creditCard#; 0; {creditRating()=="poor"}; 0; 0; 0; 1; Customer;
Employee; 0; 0; ; 1; Optional; sales rep;CorporateCustomer; 0; 0; 0;

3.2.2 SEQUENCE DIAGRAM INPUT FILE

1. Message-name => text
2. Message-number => number
3. Class-name => text
4. Condition => text
5. Args-type => text
6. Multiplicity => one | many | optional
7. Message => Message-name; Condition; Args-type; Multiplicity <return> Class
8. Class => Class-name; Message-number; {Message;}

Message-number

9. Sequence-diagram => Class

Thus we can write the input file for the sequence diagram in the previous chapter
as given below:

OrderEntryWindow;1;
 Prepare;;;;
 Order;1;
 Prepare;;;many;
 OrderLine;3;
 CheckStock;;retval=hasStock;;
 StockItem;0;
 Remove;hasStock;;;
 StockItem;2;
 NeedToReorder;;retval=needsReorder;;
 StockItem;0;
 New;needsReorder;;;
 ReorderItem;0;
 New;hasStock;;;
 DeliveryItem;0;

3.2.3 COLLABORATION DIAGRAM INPUT FILE

1. Message-name => text
2. Message-number => number
3. Sequence-number => number
4. Class-name => text
5. Instance-name => text
6. Class-Instance => Class-name | Instance-name :Class-name
7. Condition => text
8. Args-type => text
9. Multiplicity => one | many | optional
10. Message => Message-name; Sequence-number; Condition; Args-type; Multiplicity <return>

Class
11. Class => Instance-name; Message-number; {Message;}

Message-number

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 35

12. Collaboration-diagram => Class

The input file for the collaboration diagram in the previous chapter will look like
given below:

OrderEntryWindow;1;
 prepare;1;;;;
 Order;1;
 prepare;2;for all order lines;;many;
 Macallan Line:OrderLine;3;
 checkStock;3;;retval=hasStock;;
 Macallan Stock:StockItem;0;
 remove;4;hasStock;;;
 Macallan Stock:StockItem;2;
 needToReorder;5;;retval=needsReorder;;
 Macallan Stock:StockItem;0;
 new;6;needsReorder;;;
 ReorderItem;0;
 new;7;hasStock;;;
 DeliveryItem;0;

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 36

3.3 OUTPUT DESIGN

This section explains the output design of our system. Since a system can
produce various types of outputs, we must specify the output design of our
system as well. In addition to printed output and screen output, which are the
most common form, other examples include audio output, automated facsimile
and faxback, e-mail and links to Web pages. Retail point-of-sale terminals and
ATM’s produce other specialized forms of output, for example. There are several
types of output reports and are classified as detail, exception or summary reports
and as internal or external reports. There are printed report designs for both stock
paper and specialty forms. Screen output can be both character and graphical.
The objective of output control is to ensure that information is correct, complete
and secure. Data integrity must be maintained during the output process, reports
should have appropriate titles, they should be dated and pages should be
numbered and the record counts should be reconciled against the input totals.
Output security should protect the privacy and rights of individuals and
organizations and protect the data from theft or unauthorized access. Reports
should be clearly marked as confidential and should be distributed only to
authorized personnel. Sensitive reports should be stored in secure areas. There
are many products available that can provide online report and screen generators
that help design reports and screen displays.

The output design for our proposed system will be in the following way:

1. The system shall be displaying the input structure (i.e. Class, Sequence, or

Collaboration Diagram) in a formatted text format so that the input structure is
easier to understand.

2. The output will be in the XML format so that it can be displayed in the XML
tagged format in the output pane.

3. The status of the system should be displayed in the log pane in an informative
way.

Although we could have easily improved the format of the input structures by
displaying the diagrams properly, but since it is beyond the scope of the work, so
it was not concentrated upon. Furthermore, since we need the output in XML
format, so we have displayed it as it is generated.

The log pane is very important as it shows us the status of the work going on. We
can produce the warning messages as well, but it is better to have a log pane as
it will make user understand what is going on in the process.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 37

3.3.1 USER INTERFACE

The UTXGUI
user interface is
a menu-based
desktop GUI. It
will be having a
menubar for
accessing
various functions
and three panes
to display the
results: Input
Pane, Output
Pane, and Log
Pane. The Input
pane will display
the structure of
the input. Output
Pan will display
the generated
output, while the
Log Pane will
display the status
of the current
process.

The ‘Open’ menu
will have the
options of
opening the class
diagram,
sequence
diagram, and
collaboration
diagram. The
opening of these
diagram will bring

the file chooser dialog from where we
can choose the input file. This dialog is
shown in the adjacent figure. We can
close a diagram or we can generate the
corresponding XML document, if it is a
valid structure.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 38

We can also take
help on the class
diagram, sequence
diagram or the
collaboration
diagram. These
options will provide
the online help on
these documents.

When we open a
diagram, we will get
its structure in the
input pane. The log
of each and every

step will be displayed in the log pane. After opening the diagram the option of
generating the XML document will also get enabled. Now, we can do the
mapping and generate the corresponding XML document. If the document is
invalid it will not get enabled.

This is the entire
functioning of the
UTXGUI tool for the
converting of UML
diagram to XML
document. The same
procedure applies for
sequence diagram and
the collaboration
diagram. The only
difference is that here it
will ask the input
structure for the class
diagram that are to be
used to validate the
sequence and the
collaboration diagrams.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 39

3.3.2 OUTPUTS

The UTXGUI system output include the class diagram XML document generated
by our system. The following is the screenshot of the explorer window when we
opened the class diagram document generated by our system. This figure
corresponds to the example class diagram used in the chapter 1 of the
dissertation.

The output corresponding to the example sequence diagram of chapter 1
produced by the system, when viewed in the explorer is as under.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 40

Similarly, the view of the output of the collaboration diagram is in the following
diagram.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 41

3.4 SYSTEM DESIGN

The system developed has been according to the object-oriented design of
software development. The following strategy has been followed through this
development process:

• Object-oriented Analysis. It is concerned with developing an object-oriented
model of application domain. The identified objects reflect entities and
operations that are associated with the problem that is solved.

• Object-oriented Design. It is concerned with the developing an object oriented
model of a software system to implement the identified requirements. The
objects in an object-oriented design are related to the solution to the problem
that is being solved.

• Object-oriented Programming. It is concerned with the realizing a software
design using an object-oriented programming language. We have used Java
as the programming language.

We have realized the first two steps till now using the use case model and class
diagram models and now will represent these two using UML. The third step will
be discussed in the next chapter. Although we should have presented these
diagrams earlier as per the standard process, but these have been avoided in
order to first make the things clearer with the vision followed for the mappings, as
that is the prime objective of the dissertation.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 42

3.4.1 USE CASE MODEL

The following is the use case diagram for the system:

There are four use cases in the system. These are Convert Class Diagram,
Convert Sequence Diagram, Convert Collaboration Diagram, and Close Diagram.
The use case description of these use cases is given ahead.

Use Case I: Convert Class Diagram
Precondition We have a class diagram structure in input file, along with

the specified XML Schema Definition for Class Diagram
Start State User selects the class diagram from the menu.
Initiator Member Development Team
Order of Actions 1. Choose the class diagram to be converted.

2. Validate the class diagram.
3. Convert the class diagram to XML document.

Possible End State We have the XML document corresponding to the class
diagram structure.

Paths of Execution
not Allowed

If class diagram is invalid, we can’t generate XML
document.

Alternate Paths that
are Inlined or
Extracted from
Basic Path

After the conversion we can close the class diagram.

Interactions
between Actors and
the System

1. User will choose class diagram from the menu.
2. He will then specify the input file where class diagram

structure is stored.
3. He will then choose the generate option from the menu,

if the class diagram structure is validated.
4. After generating the XML class diagram document, he

can opt for closure of the class diagram.
Usage of
Resources

1. Storage space for Input File, and Output File.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 43

Use Case II: Convert Sequence Diagram
Precondition We have a sequence diagram structure in input file, along

with the specified XML Schema Definition for Sequence
Diagram

Start State User selects the sequence diagram from the menu.
Initiator Member Development Team
Order of Actions 1. Choose the Sequence diagram, and the class

diagram(s) used by this sequence diagram, to be
converted.

2. Validate the sequence diagram against the specified
class diagram.

3. Convert the sequence diagram to XML document.
Possible End State We have the XML document corresponding to the

sequence diagram structure.
Paths of Execution
not Allowed

If sequence diagram is invalid, we can’t generate XML
document.

Alternate Paths that
are Inlined or
Extracted from
Basic Path

After the conversion we can close the sequence diagram.

Interactions
between Actors and
the System

1. User will choose sequence diagram from the menu.
2. User will be specifying the class diagrams that the

sequence diagram has used.
3. He will then specify the input file where sequence

diagram structure is stored.
4. He will then choose the generate option from the menu,

if the sequence diagram structure is validated.
5. After generating the XML sequence diagram document,

he can opt for closure of the sequence diagram.
Usage of
Resources

1. Storage space for Input File, and Output File.

Use Case III: Convert Collaboration Diagram
Precondition We have a collaboration diagram structure in input file,

along with the specified XML Schema Definition for
Collaboration Diagram

Start State User selects the collaboration diagram from the menu.
Initiator Member Development Team
Order of Actions 1. Choose the Collaboration diagram, and the class

diagram(s) used by this collaboration diagram, to be
converted.

2. Validate the Collaboration diagram against the specified
class diagram.

3. Convert the collaboration diagram to XML document.
Possible End State We have the XML document corresponding to the

collaboration diagram structure.
Paths of Execution If collaboration diagram is invalid, we can’t generate XML

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 44

not Allowed document.
Alternate Paths that
are Inlined or
Extracted from
Basic Path

After the conversion we can close the collaboration
diagram.

Interactions
between Actors and
the System

1. User will choose collaboration diagram from the menu.
2. User will be specifying the class diagrams that the

collaboration diagram has used.
3. He will then specify the input file where collaboration

diagram structure is stored.
4. He will then choose the generate option from the menu,

if the collaboration diagram structure is validated.
5. After generating the XML collaboration diagram

document, he can opt for closure of the collaboration
diagram.

Usage of
Resources

1. Storage space for Input File, and Output File.

Use Case IV: Close Diagram
Precondition We have a class, sequence or collaboration diagram

opened with our system.
Start State User selects to close the diagram from the menu.
Initiator Member Development Team
Order of Actions 1. Choose the close diagram option from the menu.

2. System will check which diagram is opened with the
system.

3. It will close the diagram and all resources are freed.
Possible End State The open diagram is closed.
Paths of Execution
not Allowed

Nil.

Alternate Paths that
are Inlined or
Extracted from
Basic Path

Nil.

Interactions
between Actors and
the System

1. User will choose close diagram from the menu.

Usage of
Resources

Nil.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 45

3.4.2 CLASS DIAGRAM MODEL

The class diagram of the system represents the static model of the system. It is
very important for the forward as well as backward engineering of the product.
We will be presenting the class diagram of our system now. These figures will
present the static view of our system. We can then concentrate on the dynamic
aspects of our system.

The previous diagram represents the class diagram of the structure representing
the class diagram. It is an entity class. The class ‘Class’ will be representing the
class diagram. It will be having two attributes: name, and constraint. It will be
composing of the InstanceVariable, Operator, Association, Composition,
Aggregation, and Generalization classes as well. We have used the linked
structure of all these classes. So we have a ‘composition’ relationship amongst
these classes. Also all these classes have the same relationship with themselves.
Thus we will have a multilinked structure of these classes representing the class
diagram.

The sequence diagram can be represented by the structure in the following
figure. Here we will have a ‘Sequence’ class, which will be representing the
sequence diagram. The sequence will be an entity class, and it will have a
className and a message. The message will have the attributes for a message
and will be composing of a message and a sequence. This will be enabling us to
represent us a sequence diagram.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 46

A collaboration diagram is much of the same, except that it may have the
instance names, and a sequence number for the messages. The figure next to
the sequence diagram is having the class structure for the collaboration diagram.
The class ‘CollSequence’ class, which is an entity class, will be representing the
collaboration diagram. It will also be having a multilinked structure.

Finally, we will have to have a boundary class as well. A boundary class models
the interactions between the user and the system. It is typically an user interface
class. Our boundary class is UTXGUI. It will be having the menuBar, and the
selected object (class, sequence, and collaboration diagram). It will also be taking
care of all the responsibilities of doing the tasks like reading, validating, and
converting the diagrams (class, sequence, and collaboration). This class will be
providing access to each and every function that is to be performed by the
system. The menuBar object of MenuBar will be implementing the interface menu
for providing access to these operators. So, all these operators need to have
private access specifier.

The UTXGUI class will be having objects of Class, Sequence, and CollSequence
classes to store the class diagram, sequence diagram, and collaboration
diagram. The will be processed as and when required by the corresponding user
action. Hence, now on we can finally present the final and complete class
diagram structure. The figure on the next page specifies the whole static structure
of our system.

We have no control class, but the boundary class UTXGUI itself takes care of the
some of the controls like menu management, event handling etc.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 47

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 48

CHAPTER 4

IMPLEMENTATION

This chapter discusses the implementation of our automated system designed in
the previous chapter. After the designing the system, we must implement it to
realize it into a software product. This will ensure that the mapping scheme we
have proposed and developed is working in the practical application domains.
Thus the implementation of the design presented in previous chapter realizes a
system which automates the mappings from UML diagrams to XML documents
as per our mapping scheme.

The mapping scheme followed has necessarily been as presented in the chapter
2. It uses the XML Schema Definition document presented in the same chapter.
The system will be taking in the input a file having the structure of the input
structure, and will produce in output an XML Schema document referencing the
prescribed schema definitions. The automation ensures that we can automate the
whole process, thus avoiding transferring of large data in the form of UML
diagrams over the networks.

We have developed the system using Java, Java Foundation Classes (The Java
“Swing” Technology. We have also used the object oriented system analysis and
design. The first section of this chapter concentrates on an introduction to these
technologies and tools.

The second section will explain the program logic and the method of the
mappings from the input to the output.

The third section explains the user interface and its functions.

The fourth sections emphasizes on the output screens of the developed system.
It will explain the outputs produced by the system.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 49

4.1 TOOLS AND TECHNOLOGIES USED

This section explains the technologies used in the implementation of the system
developed for the automation of the mapping from UML Diagrams to XML
documents. Since UML and XML are already explained elsewhere, we have
avoided explaining these right here. The next sections explain Java, Java Swing,
and OOA&D.

4.1.1 JAVA

The Java programming language is a high-level language that has following
characteristics:

• Simple • Architecture neutral

• Object oriented • Portable

• Distributed • High performance

• Interpreted • Multithreaded

• Robust • Dynamic

• Secure

With most programming languages, you either compile or interpret a program so
that you can run it on your computer. The Java programming language is
unusual in that a program is both compiled and interpreted. With the compiler,
first you translate a program into an intermediate language called Java
bytecodes —the platform-independent codes interpreted by the interpreter on the
Java platform. The interpreter parses and runs each Java bytecode instruction on
the computer. Compilation happens just once; interpretation occurs each time the
program is executed. The following figure illustrates how this works.

You can think of Java bytecodes as the machine code instructions for the Java
Virtual Machine (Java VM). Every Java interpreter, whether it's a development
tool or a Web browser that can run applets, is an implementation of the Java VM.

Java bytecodes help make "write once, run anywhere" possible. You can compile
your program into bytecodes on any platform that has a Java compiler. The
bytecodes can then be run on any implementation of the Java VM. That means
that as long as a computer has a Java VM, the same program written in the Java
programming language can run on Windows 2000, a Solaris workstation, or on
an iMac.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 50

The Java Platform

A platform is the hardware or software environment in which a program runs.
We've already mentioned some of the most popular platforms like Windows
2000, Linux, Solaris, and MacOS. Most platforms can be described as a
combination of the operating system and hardware. The Java platform differs
from most other platforms in that it's a software-only platform that runs on top of
other hardware-based platforms.

The Java platform has two components:

• The Java Virtual Machine (Java VM)

• The Java Application Programming Interface (Java API)

You've already been introduced to the Java VM. It's the base for the Java
platform and is ported onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that
provide many useful capabilities, such as graphical user interface (GUI) widgets.
The Java API is grouped into libraries of related classes and interfaces; these
libraries are known as packages.

The figure depicts a program that's
running on the Java platform. As the
figure shows, the Java API and the
virtual machine insulate the program
from the hardware.

Native code is code that after you compile it, the compiled code runs on a
specific hardware platform. As a platform-independent environment, the Java
platform can be a bit slower than native code. However, smart compilers, well-
tuned interpreters, and just-in-time bytecode compilers can bring performance
close to that of native code without threatening portability.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 51

4.1.2 JAVA SWING AND JFC

JFC is short for JavaTM Foundation Classes, which encompass a group of
features to help people build graphical user interfaces (GUIs). The JFC was first
announced at the 1997 JavaOne developer conference and is defined as
containing the following features:

The Swing Components

Include everything from buttons to split panes to tables.

Pluggable Look and Feel Support

Gives any program that uses Swing components a choice of looks and feels.
For example, the same program can use either the JavaTM look and feel or the
Windows look and feel. We expect many more look-and-feel packages --
including some that use sound instead of a visual "look" -- to become
available from various sources.

Accessibility API

Enables assistive technologies such as screen readers and Braille displays to
get information from the user interface.

Java 2DTM API (Java 2 Platform only)

Enables developers to easily incorporate high-quality 2D graphics, text, and
images in applications and in applets.

Drag and Drop Support (Java 2 Platform only)

Provides the ability to drag and drop between a Java application and a native
application.

The first three JFC features were implemented without any native code, relying
only on the API defined in JDK 1.1. As a result, they could and did become
available as an extension to JDK 1.1. This extension was released as JFC 1.1,
which is sometimes called "the Swing release." The API in JFC 1.1 is often called
"the Swing API."

Note: "Swing" was the codename of the project that developed the new
components. Although it's an unofficial name, it's frequently used to refer to the
new components and related API. It's immortalized in the package names for the
Swing API, which begin with javax.swing.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 52

4.2 PROGRAM STRUCTURE

This section explains the logic of the system implemented. Apart from the
structure of all the classes used we will be presenting the way we have
implemented the various mechanics of our system. Although the core logic
remains as discussed in the previous chapters, we have altered only the
technical aspects as and when required. Since we can easily convert the UML
diagrams into a feasible system in Java. So, most of it was done pretty easily.

The following pseudo codes present the structure of the classes of the class
diagram in the way they were implemented. The code of the methods are
avoided in order to save the space. Also since all the classes except for the
UTXGUI class are entity classes, so everything is self explanatory for these class
definitions.

The class ‘Class’ is used to represent the class diagram using the classes
InstanceVariable, Operator, Association, Composition, Aggregation, and
Generalization.

Class

public class Class
{
 String name;
 InstanceVariable instanceVariable;
 Operator operator;
 String constraint;
 Association association;
 Composition composition;
 Aggregation aggregation;
 Generalization generalization;
 Class nextClass;

 public Class()
 {
 // constructor
 }
}

InstanceVariable

public class InstanceVariable
{
 String name;
 InstanceVariable nextInstanceVariable;

 public InstanceVariable()
 {
 // constructor
 }
}

Operator

public class Operator
{

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 53

 String name;
 String argsType;
 String retType;
 Operator nextOperator;

 public Operator()
 {
 // constructor
 }
}

Association

public class Association
{
 String multiplicity;
 String roleName;
 String className;
 Association nextAssociation;

 public Association()
 {
 // constructor
 }
}

Composition

public class Composition
{
 String multiplicity;
 String className;
 Composition nextComposition;

 public Composition()
 {
 // constructor
 }
}

Aggregation

public class Aggregation
{
 String multiplicity;
 String className;
 Aggregation nextAggregation;

 public Aggregation()
 {
 // constructor
 }
}

Generalization

public class Generalization
{
 String className;
 Generalization nextGeneralization;

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 54

 public Generalization()
 {
 // constructor
 }
}

The class ‘Sequence’ will represent the sequence diagram, using the ‘Message’
class as well.

Sequence

Public class Sequence
{
 String className;
 Message message;

 public Sequence()
 {
 // constructor
 }
}

Message

Public class Message
{
 String messageName;
 String condition;
 String argsType;
 String multiplicity;
 Sequence sequence;
 Message nextMessage;

 public Message()
 {
 // constructor
 }
}

The class ‘CollSequence’ will represent a collaboration diagram, using the class
‘CollMessage’.

CollSequence

Public class CollSequence
{
 String className;
 String instanceName;
 CollMessage collMessage;

 public CollSequence()
 {
 // constructor
 }
}

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 55

CollMessage

Public class CollMessage
{
 String messageName;
 String messageNumber;
 String condition;
 String argsType;
 String multiplicity;
 CollSequence collSequence;
 CollMessage nextMessage;

 public CollMessage()
 {
 // constructor
 }
}

The class ‘UTXGUI’ will be presenting user interface elements and their
functionality. It inherits the class JFrame of the JFC, which helps in managing the
desktop windows more conveniently. Various menu items are used to manage
the user input to the system. We have only presented the methods, which the
user interface accesses directly. The program logic involves more functions. All of
the functions are declared private as these are to be accessed by the function
managing the menubar event processing, actionPerformed.

UTXGUI

public class UTXGUI extends JFrame
{
 JTextArea log, input, output;
 JScrollPane logPane, inputPane, outputPane;
 JTabbedPane tabbedPane;
 String newline = "\n", selection="";
 Class classDiagram;
 CollSequence collaborationDiagram;
 Sequence sequenceDiagram;
 JMenuBar menuBar;
 JMenu menu1, menu2, menu3;
 JMenuItem menuItem11, menuItem12, menuItem13, menuItem14, menuItem15, menuItem21,
menuItem31, menuItem32, menuItem33;

// method to handle the menu events.
 public void actionPerformed(ActionEvent e)

// method to convert a class diagram to XML document.
 private void classToXML(String fileName, Class c)

// method to convert a sequence diagram to XML document.
 private void sequenceToXML(Sequence ss, String fileName)

// method to convert a collaboration diagram to XML document
 private void collaborationToXML(CollSequence ss, String fileName)

// method to read a class file
 private Class readClassFile(String fileName)

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 56

// method to display a class diagram in the input pane
 private void displayClass(Class c)

// method to validate a class diagram: valid=true
 private boolean validateClassDiagram(Class c)

// method to read a collaboration diagram input file
 private CollSequence readCollaborationFile(String fileName)

// method to display a collaboration diagram in the input pane
 private void displayCollaborationDiagram(CollSequence ss)

// method to validate a collaboration diagram: valid=true
 private boolean validateCollaborationDiagram(CollSequence ss, Class c)

// method to read a sequence diagram input file
 private Sequence readSequenceFile(String fileName)

// method to display a sequence diagram in the input pane
 private void displaySequenceDiagram(Sequence ss)

// method to validate a sequence diagram: valid=true
 private boolean validateSequenceDiagram(Sequence ss, Class c)
}

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 57

CHAPTER 5

DEMONSTRATION

This chapter is dedicated to the demonstration of the developed system. In order
to explain the use of system we must explain each and every step involved in the
demonstration. This also ensures that the system gives out proper output,
provided the input design is followed.

5.1 CLASS DIAGRAM

Step I:

We must have a class diagram to be converted to XML document. This class
diagram must be in the format as per the specification of the Input Design of
Chapter 3. In the example run we have taken the following class diagram.

The equivalent input file for this class diagram is as given below:

Order; 4; dateRecieved; isPrepaid; number:String; price:Money; 2; dispatch;;; close;;; {if
Order.customer.creditRating is "poor", then Order.isPrepaid must be true}; 2; many;;Customer;
one;;OrderLine; 0; 0; 0;
Customer; 2; name; address; 1; creditRating;;String; ; 1; one;;Order; 0; 0; 0;

Figure 1

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 58

OrderLine; 3; quantity:Integer; price:Money; isSatisfied:Boolean; 0; ; 2; many;line items;Order;
many;;Product; 0; 0; 0;
Product; 0; 0; ; 1; one;;OrderLine; 0; 0; 0;
CorporateCustomer; 3; contactName; creditRating; creditLimit; 2; remind;;; billForMonth;Integer;; ;
1; many;;Employee; 0; 0; 1; Customer;
PersonalCustomer; 1; creditCard#; 0; {creditRating()=="poor"}; 0; 0; 0; 1; Customer;
Employee; 0; 0; ; 1; Optional; sales rep;CorporateCustomer; 0; 0; 0;

Step II: (Open -> Class Diagram…)

After having the
above class
diagram input
structure we can run
our system and
choose the Class
Diagram option from
the Open menu.
The system will now
ask for the location
of the input file
structure using a file
chooser dialog.

This will result in the
opening of the class
diagram and the
creation of the class
diagram structure,
which will be
displayed in the
Input Pane. The
system will check
the input class file
for validity and
display whether it is
valid or not in the
Log Pane.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 59

Step III: (Generate -> XML Schema Document…)

Now we can generate
the class diagram XML
document by choosing
XML Schema
Document from the
Generate menu. This
will ask for the location
for the saving of the
generated document.
This location must be
having the XML
Schema Definition
document, so that the
document we
generated can
reference it for its structure. This
will result in the generation of the
XML Schema Document for the
class diagram input. This will be
displayed in the Output Pane as
well. Also, we can view it in any
Internet browser supporting XML
Schemas.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 60

The output file generated is given as under:

<diagram xmlns="x-schema:classDiagram.xsd">
 <class name="Order">

 <instance-variable>dateRecieved</instance-variable>
 <instance-variable>isPrepaid</instance-variable>
 <instance-variable>number:String</instance-variable>
 <instance-variable>price:Money</instance-variable>
 <operator name="dispatch" />
 <operator name="close" />
 <constraint>{if Order.customer.creditRating is "poor" then Order.isPrepaid must be
"true"}</constraint>
 <association multiplicity="many">
 <class-name>Customer</class-name>
 </association>
 <association multiplicity="one">
 <class-name>OrderLine</class-name>
 </association>
 </class>

 <class name="Customer">
 <instance-variable>name</instance-variable>
 <instance-variable>address</instance-variable>
 <operator name="creditRating">

 <ret-type>String</ret-type>
 </operator>
 <association multiplicity="one">
 <class-name>Order</class-name>
 </association>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 61

 </class>

 <class name="OrderLine">
 <instance-variable>quantity:Integer</instance-variable>
 <instance-variable>price:Money</instance-variable>
 <instance-variable>isSatisfied:Boolean</instance-variable>
 <association multiplicity="many" role-name="line items">

 <class-name>Order</class-name>
 </association>
 <association multiplicity="many">
 <class-name>Product</class-name>
 </association>
 </class>

 <class name="CorporateCustomer">
 <instance-variable>contactName</instance-variable>
 <instance-variable>creditRating</instance-variable>
 <instance-variable>creditLimit</instance-variable>
 <operator name="remind" />
 <operator name="billForMonth">
 <args-type>Integer</args-type>
 </operator>
 <association multiplicity="many">
 <class-name>Employee</class-name>
 </association>
 <generalization>
 <class-name>Customer</class-name>
 </generalization>
 </class>

 <class name="PersonalCustomer">

 <instance-variable>creditCard#</instance-variable>
 <constraint>{creditRating() == "poor"}</constraint>
 <generalization>
 <class-name>Customer</class-name>
 </generalization>
 </class>

 <class name="Employee">
 <association multiplicity="optional" role-name="sales rep">
 <class-name>CorporateCustomer</class-name>
 </association>
 </class>

 <class name="Product">
 <association multiplicity="one">

 <class-name>OrderLine</class-name>
 </association>
 </class>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 62

5.2 SEQUENCE DIAGRAM

Step I:

We must have a sequence diagram to be converted to XML document. This
sequence diagram must be in the format as per the specification of the Input
Design of Chapter 3. In the example run we have taken the following sequence
diagram.

The equivalent input file for this sequence diagram is given below.

OrderEntryWindow;1;
 Prepare;;;;
 Order;1;
 Prepare;;;many;
 OrderLine;3;
 CheckStock;;retval=hasStock;;
 StockItem;0;
 Remove;hasStock;;;
 StockItem;2;
 NeedToReorder;;retval=needsReorder;;
 StockItem;0;
 New;needsReorder;;;
 ReorderItem;0;
 New;hasStock;;;
 DeliveryItem;0;

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 63

The class diagram structure used to validate this sequence diagram is as given
below:

Order;4;dateRecieved;isPrepaid;number:String;price:Money;3;dispatch;;;close;;;prepare;;;{if
Order.customer.creditRating is "poor", then Order.isPrepaid must be
true};2;many;;Customer;one;;OrderLine;0;0;0;
Customer;2;name;address;1;creditRating;;String;;1;one;;Order;0;0;0;
OrderLine;4;quantity:Integer;price:Money;isSatisfied:Boolean;hasStock;2;checkStock;;;remove;;;;
2;many;line items;Order;many;;Product;0;0;0;
Product;0;0;;1;one;;OrderLine;0;0;0;
CorporateCustomer;3;contactName;creditRating;creditLimit;2;remind;;;billForMonth;Integer;;;1;ma
ny;;Employee;0;0;1;Customer;
PersonalCustomer;1;creditCard#;0;{creditRating()=="poor"};0;0;0;1;Customer;
Employee;0;0;;1;Optional;sales rep;CorporateCustomer;0;0;0;
StockItem;1;needsReorder:Boolean;1;needToReorder;;;;0;0;0;0;
ReorderItem;0;0;;0;0;0;0;
DeliveryItem;0;0;;0;0;0;0;
OrderEntryWindow;0;1;prepare;;;;0;0;0;0;
Step II: (Open -> Sequence Diagram…)

Now we can run our system to convert the above specified sequence diagram to
XML document by choosing Sequence Diagram from the Open menu.

The system will now ask for the class
diagram that is to be used to validate
the sequence diagram. We can
choose that using the file chooser
dialog box. The system will now ask
whether we want to use another class
diagram to validate the class diagram,

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 64

we can do so if we have to use more than one class diagrams to validate a single
sequence diagram.

Now the system
will ask for the
input file for the
sequence diagram
structure. We can
choose it using the
file chooser dialog.
The system will
validate the input
sequence diagram
and display the
structure of the
class diagram(s)
and sequence
diagram in the
input pane. It will
display the status of all the steps including validity in the log pane of the system.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 65

Step III: (Generate -> XML Schema Document…)

Now we
can
generate
the XML
document
for the
given
sequence
diagram.
For this we
will choose
XML
Schema
Document
option
from the
Generate
menu. It
will ask for

the
location of
the output
XML
document,
which we
can
specify
using the
file
chooser
dialog box.
It should
be stored
at the
same
location
where we
have
saved the
XML Schema Definition for sequence diagram, so that it can reference the XML
Schema to get its document structure. This output will be displayed in the output
pane of the system. The output file can be viewed in any Internet browser
supporting XML Schemas.

The generated output file is as given under.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 66

<diagram xmlns="x-schema:sequenceDiagram.xsd">
 <class-name name="OrderEntryWindow">
 <class-operator condition="true" multiplicity="one">
 <method-name>prepare</method-name>
 <class-name name="Order">
 <class-operator multiplicity="many" condition="true">
 <method-name>prepare</method-name>
 <class-name name="OrderLine">
 <class-operator condition="true" multiplicity="one">
 <method-name>checkStock</method-name>
 <args-type>retval=hasStock</args-type>
 <class-name name="StockItem" />

 </class-operator>
 <class-operator condition="hasStock" multiplicity="one">

 <method-name>remove</method-name>
 <class-name name="StockItem">
 <class-operator condition="true" multiplicity="one">

 <method-name>needToReorder</method-name>
 <args-type>retval=needsReorder</args-type>
 <class-name name="StockItem" />
 </class-operator>
 <class-operator condition="needsReorder" multiplicity="one">
 <method-name>new</method-name>
 <class-name name="ReorderItem" />

 </class-operator>
 </class-name>
 </class-operator>
 <class-operator condition="hasStock" multiplicity="one">
 <method-name>new</method-name>
 <class-name name="DeliveryItem" />
 </class-operator>
 </class-name>
 </class-operator>
 </class-name>
 </class-operator>
 </class-name>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 67

5.2 COLLABORATION DIAGRAM

Step I:

We must have a collaboration diagram to be converted to XML document. This
collaboration diagram must be in the format as per the specification of the Input
Design of Chapter 3. In the example run we have taken the adjacent
collaboration diagram.

The equivalent input file for this collaboration diagram is given below.

OrderEntryWindow;1;
 prepare;1;;;;
 Order;1;
 prepare;2;for all order lines;;many;
 Macallan Line:OrderLine;3;
 checkStock;3;;retval=hasStock;;
 Macallan Stock:StockItem;0;
 remove;4;hasStock;;;
 Macallan Stock:StockItem;2;
 needToReorder;5;;retval=needsReorder;;
 Macallan Stock:StockItem;0;
 new;6;needsReorder;;;
 ReorderItem;0;
 new;7;hasStock;;;
 DeliveryItem;0;

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 68

The class diagram structure used to validate this collaboration diagram is as
given below:

Order;4;dateRecieved;isPrepaid;number:String;price:Money;3;dispatch;;;close;;;prepare;;;{if
Order.customer.creditRating is "poor", then Order.isPrepaid must be
true};2;many;;Customer;one;;OrderLine;0;0;0;
Customer;2;name;address;1;creditRating;;String;;1;one;;Order;0;0;0;
OrderLine;4;quantity:Integer;price:Money;isSatisfied:Boolean;hasStock;2;checkStock;;;remove;;;;
2;many;line items;Order;many;;Product;0;0;0;
Product;0;0;;1;one;;OrderLine;0;0;0;
CorporateCustomer;3;contactName;creditRating;creditLimit;2;remind;;;billForMonth;Integer;;;1;ma
ny;;Employee;0;0;1;Customer;
PersonalCustomer;1;creditCard#;0;{creditRating()=="poor"};0;0;0;1;Customer;
Employee;0;0;;1;Optional;sales rep;CorporateCustomer;0;0;0;
StockItem;1;needsReorder:Boolean;1;needToReorder;;;;0;0;0;0;
ReorderItem;0;0;;0;0;0;0;
DeliveryItem;0;0;;0;0;0;0;
OrderEntryWindow;0;1;prepare;;;;0;0;0;0;

Step II: (Open -> Collaboration Diagram…)

Now we can run our system to convert the above specified collaboration diagram
to XML document by choosing Collaboration Diagram from the Open menu.

The system will now ask for the class
diagram that is to be used to validate
the collaboration diagram. We can
choose that using the file chooser
dialog box. The system will now ask
whether we want to use another class
diagram to validate the collaboration
diagram, we can do so if we have to use more than one class diagrams to
validate a single collaboration diagram.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 69

Now the system
will ask for the
input file for the
collaboration
diagram structure.
We can choose it
using the file
chooser dialog.
The system will
validate the input
collaboration
diagram and
display the
structure of the
class diagram(s)
and collaboration
diagram in the
input pane. It will
display the status of all the steps including validity in the log pane of the system.

Step III: (Generate -> XML Schema Document…)

Now we
can
generate
the XML
document
for the
given
collaboratio
n diagram.
For this we
will choose
XML
Schema
Document
option from
the
Generate
menu. It
will ask for
the location of the output XML document, which we can specify using the file
chooser dialog box. It should be stored at the same location where we have
saved the XML Schema Definition for collaboration diagram, so that it can

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 70

reference the XML Schema to get its document structure. The output file can be
viewed in any Internet browser supporting XML Schemas.

The generated output file is as given under.

<diagram xmlns="x-schema:collaborationDiagram.xsd">
 <class name="OrderEntryWindow">
 <class-operator name="prepare" sequence-number="1" condition="true" multiplicity="one">
 <class name="Order">
 <class-operator name="prepare" sequence-number="2" multiplicity="many" condition="for all
order lines">
 <class name="OrderLine">
 <instance-name>Macallan Line</instance-name>
 <class-operator name="checkStock" sequence-number="3" condition="true"
multiplicity="one">
 <args-type>retval=hasStock</args-type>
 <class name="StockItem">
 <instance-name>Macallan Stock</instance-name>
 </class>
 </class-operator>
 <class-operator name="remove" sequence-number="4" condition="hasStock"
multiplicity="one">
 <class name="StockItem">

 <instance-name>Macallan Stock</instance-name>
 <class-operator name="needToReorder" sequence-number="5" condition="true"
multiplicity="one">
 <args-type>retval=needsReorder</args-type>
 <class name="StockItem">

 <instance-name>Macallan Stock</instance-name>
 </class>
 </class-operator>
 <class-operator name="new" sequence-number="6" condition="needsReorder"
multiplicity="one">
 <class name="ReorderItem" />
 </class-operator>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 71

 </class>
 </class-operator>
 <class-operator name="new" sequence-number="7" condition="hasStock"
multiplicity="one">
 <class name="DeliveryItem" />
 </class-operator>
 </class>
 </class-operator>
 </class>
 </class-operator>
 </class>
</diagram>

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 72

CHAPTER 6

CONCLUSION

While dealing with the large volumes of data to be shared by the development
team during the software solution development life cycles, it is very important that
each and every member gets the data required by him as soon as possible.
Although, UML has become the widely accepted standard for modeling the
physical as well as software systems, the UML diagrams are not very convenient
travelers over the Internet due to their large size. Additionally, with the growth of
software industry the application domains have increased rapidly. This has
resulted in the increase in size of the UML diagrams for a software system.
Hence, the sharing of these diagrams over the networks by large project teams
has become more and more difficult. XML, being a standard information
representation and sharing language across Internet, can be a better solution for
the purpose of sharing it over network. Still UML is better alternative for modeling.
So, in order to make the things convenient for such parties who want to share
these diagrams over the networks, a better strategy can be to model the systems
using UML and then in order to share it over network we can convert the UML
diagrams to XML documents.

In this thesis, we have discussed a mapping scheme, which will enable us to map
the UML diagrams, like class diagrams, sequence diagrams and collaboration
diagrams, to XML documents using XML Schema. For this we have defined an
XML Schema Definition document for each of these diagrams. The mapping
scheme takes a UML diagram and convert it into an XML document, whose
structure can be received by referencing the appropriate XSD. This ensures that
we don’t have to generate schema for each and every UML diagrams, which is a
more complex task. We have also designed and implemented a software, which
will automate the process of mapping UML diagrams to XML documents. The
mapping scheme provides the XML Schema definition for three most widely used
UML diagrams, namely class diagram, sequence diagram, and collaboration
diagram, and presents a mapping methodology to convert these diagrams into
XML documents.

6.1 FUTURE WORK

We have worked on the mapping scheme, which is sufficient enough to map the
three types of UML diagrams, class diagrams, sequence diagrams, and
collaboration diagrams to XML documents. Further, we can extend this work by
mapping some other important models of UML like use case model, state chart
model, and activity model to XML. Also since XML documents are not very easy
to understand, we can also work to model the XML documents representing UML
diagrams back to UML.

Finally, after all this work is done, we will be able to share the UML models over
the networks in a very convenient way amongst large development parties, thus
reducing the resource usage in development process.

MMAAPPPPIINNGG UUMMLL DDIIAAGGRRAAMMSS TTOO XXMMLL 73

BIBLIOGRAPHY

1. CT Arrington; “Enterprise Java with UML”; OMG Press, 2001.
2. David Carlson; “Modeling XML Vocabularies with UML: Part – I”;

http://www.xml.com /pub/a/2001/08/22/uml.html
3. David Carlson; “Modeling XML Vocabularies with UML: Part – II”;

http://www.xml.com /pub/a/2001/09/19/uml.html
4. David Carlson; “Modeling XML Vocabularies with UML: Part – III”;

http://www.xml.com/pub/a/2001/10/10/uml.html.
5. Grady Booch, Magnus Christerson, Mathew Fuchs, Jari Koistinen; “UML for

XML Schema Mapping Specification”;
http://www.rational.com/media/uml/resources/media
/uml_xmlschema33.pdf?SMSESSION=NO

6. I-Chen Wu, Shang-Hsien Hsieh; “An UML-XML-RDB Model Mapping Solution
for Facilitating Information Standardization and Sharing in Construction
Industry”; http://fire.nist.gov/bfrlpubs/build02/PDF/b02158.pdf.

7. James Rumbaugh, Ivar Jacobson, Grady Booch; “The Unified Modeling
Language Reference Manual”; Addison-Wesley.

8. James Rumbaugh, Ivar Jacobson, Grady Booch; “The Unified Modeling
Language User Guide”; Addison-Wesley.

9. Kurt Cagle; “XML Developer’s Handbook”; BPB Publications, 2000.
10. Martin Fowler, Kendall Scott; “UML Distilled”; Pearson Education, 2001 (2/e).
11. P. Naughton, H. Schildt; “Java2: The Complete Reference”; Tata McGraw Hill.
12. Sandra E. Eddy, BK DeLong; “XML Programming Reference”; IDG Books,

2001(2/e).
13. W3C Recommendation; “XML Schema Part 0: Primer”; W3C,

http://www.w3.org /TR/xmlschema-0/.
14. W3C Recommendation; “XML Schema Part 1: Structures”; W3C,

http://www.w3.org /TR/xmlschema-1/.
15. W3C Recommendation; “XML Schema Part 2: Datatypes”; W3C,

http://www.w3.org /TR/xmlschema-2/.
16. W3C Recommendation; “XML Schema Requirements”; W3C,

http://www.w3.org/TR/NOTE-xml-schema-req.
17. W3C; ”XML Schema”; http://www.w3c.com.
18. The JavaTM Tutorial; “Trail: Creating a GUI with JFC/Swing (The Swing

Tutorial)”; Sun Microsystems, Inc.;
http://java.sun.com/docs/books/tutorial/uiswing/.

19. SmartDraw UML Center; “How to draw UML Diagrams”; SmartDraw.com;
http://www.smartdraw.com/resources/centers/uml/uml.htm.

20. W3Schools; “XML Schema Tutorials”; W3Schools.com;
http://www.w3schools.com/ schema/default.asp.

21. W3Schools; “XML Tutorial”; W3Schools.com; http://www.w3schools.com/xml/
default.asp.

22. John E. Hopcroft and Jeffrey D. Ullman; “Introduction to Automata Theory,
Languages, and Computation”; Narosa Publishing House, 1999.

	Front Page
	Certificate
	Acknowledgements
	Abstract
	Contents
	Chapter 1: Introduction
	Chapter 2: The Mapping
	Chapter 3: Design
	Chapter 4: Implementation
	Chapter 5: Demonstration
	Chapter 6: Conclusion
	Bibliography

		2004-03-17T10:55:54+0530
	Jitender Singh
	I am the author of this document

